مقایسه روش های الگوریتم ژنتیک و خودتوضیح با وقفه‏ های گسترده به منظور تخمین تابع تولید بخش کشاورزی ایران

نویسندگان

1 دانشجوی کارشناسی ارشد اقتصاد کشاورزی دانشگاه شهید باهنر کرمان

2 استادیار اقتصاد کشاورزی دانشگاه شهید باهنر کرمان

3 دانشیار اقتصاد کشاورزی دانشگاه شهید باهنر کرمان

4 دانشیار مهندسی برق دانشگاه شهید باهنر کرمان

چکیده

تاکنون مطالعات متعددی در تخمین تابع تولید در بخش کشاورزی صورت گرفته است. اغلب این مطالعات روش های اقتصاد‏سنجی را برای تخمین توابع تولید به کار برده‏اند. با توجه به اینکه اخیراً الگوریتم‏های ابتکاری در مدت زمان اندکی کاربردهای گسترده‏ای در مسائل بهینه‏سازی یافته است؛ در این مطالعه نیز با به کارگیری روش الگوریتم ژنتیک(GA) به منظور برآورد تابع تولید در بخش کشاورزی، به مقایسه ی این مدل با روش خودتوضیح با وقفه‏های گسترده(ARDL) پرداخته شده است. برای برآورد تابع تولید از داده های سری زمانی ارزش افزوده، نیروی کار، انرژی و سرمایه‏ی بخش کشاورزی طی دوره ی زمانی 86-1356 استفاده گردیده و نتایج مقایسه‏ی این دو روش براساس دو معیار خطای ریشه متوسط مربعات(RMSE) و ضریب تعیین(R2 ) حاکی از آن است که روش الگوریتم ژنتیک نسبت به روش ARDL از کارایی بالایی در تخمین تابع تولید برخوردار است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Genetic Algorithm and Auto-Regressive Distributed Lag Method in Estimating Production Function of Iranian Agriculture

نویسندگان [English]

  • S. Negarchi 1
  • M.R. Zare Mehjerdi 2
  • H. Mehrabi Boshrabadi 3
  • H. Nezamabadipour 4
چکیده [English]

Several studies have estimated production function in agriculture. Most of them have used econometric methods. Recently, the heuristic algorithms have been widely in optimization problems. In this study, genetic algorithm (GA) model has been compared with a Auto regressive distributed lag (ARDL) approach to estimate the production function in agriculture. Time series data of value added, labor, energy and capital agriculture sector was used of 1978-2008. Comparing the results of two methods based on two criteria of Root Mean Square Error (RMSE) and Coefficient of Determination (R2), indicated that the genetic algorithm is more efficient than the ARDL approach
 

کلیدواژه‌ها [English]

  • Genetic Algorithm
  • ARDL
  • Agricultural Production
1. Amir Teymouri, S. and S. Khalilian. 2008. Productivity growth in
total factor productivity in the agricultural sector of Iran and its
prospects in the fourth development plan. Journal of Agricultural
Economic and Development,59: 37-52.
2. Amjadi, M.H. Nezamabadi-pour, H. and M. M. Farsangi. 2010.
Estimation of Electricity Demand of Iran Using Two Heuristic
Algorithms. Energy Conversion and Management. 51: 493-497.
3. Canyurt O.E. and H.K. Ozturk. 2006. Three different applications
of genetic algorithm search techniques on oil demand estimation.
Energy Converstion & Management.47: 3138-48.
4. Goldberg, D. E. 1989. Genetic Algorithm in Search,
Optimization and Machine Learning. Addison-Wesley.
5. Haldenbilen, S. and H. Ceylan. 2005. Genetic algorithm approach
to estimate transport energy demand in Turkey, Fuel and Energy.
46: 193-204.
6. Hamamoto, M. 2006. Environmental regulation and the
productivity of Japanese manufacturing industries. Journal of
Resource and Energy Economics. 604: 14-25.
7. Hojabr Kiani, K. and SH. Varedi. 2001. Important factor of
energy in agricultural production of Iran. . Journal of Agricultural
Economic and Development, 30: 7-41.
8. Holland, J. H. 1992. Adaptation in natural and artificial systems.
Cambridge, MA: MIT Press. (First edition, 1975, University of
Michigan Press.)
9. Mehrara, M. and E. Ahmadzadeh. 2010. The impacts of total
factor productivity on the Iran economy main sectors. Journal of
Economic Research, 44(2).
10. Nezamabadi-pour, H. 2011. Genetic algorithm: Basic concepts
and advanced topics. Shahid Bahonar University of Kerman
Publications.
11. Noferesti, M. 2000. Unit root and cointegration in econometrics.
Rasa Publications, Tehran.
12. Sadeghi, H., Zolfaghari, M. and M. Heidari. 2010. Estimates of
gasoline demand in the transportation sector by using genetic
algorithm. Energy Economics Studies, 6 (21) :1-27.
13. Tahami Pour, M. and M. Shahmoradi. 2008. Measuring total
factor productivity growth in agricultural sector and serving its
proportion of added value growth. Sixth conference of
Agricultural Economics.
14. Tkacz, G. 2001 .Neural network forecasting of canadian GDP
growth , International Journal Of Forecasting, 17: 57-69.