امکان سنجی اقتصادی به منظور سرمایه گذاری در احداث صنایع لبنی در شرایط عدم قطعیت

نویسندگان

1 استادیار اقتصاد کشاورزی دانشگاه آزاد اسلامی واحد مبارکه

2 کارشناس ارشد اقتصاد کشاورزی دانشگاه آزاد اسلامی واحد مبارکه

چکیده

با توجه به اهمیت و نقش صنایع فرآوری شیر و محصولات لبنی در بخش کشاورزی، هدف این پژوهش مکان یابی بهینه صنایع فرآوری شیر و محصولات لبنی در استان های کشور در شرایط عدم قطعیت می باشد. برای این منظور ابتدا شاخص های موثر بر هدف نهایی مسئله تعیین گردید، سپس میزان اثرگذاری آنها (اوزان) به کمک نظر کارشناسان تعیین شد. در مرحله بعد، به منظور وارد کردن ابهامات و عدم دقت در قضاوت های کلامی و تجربی کارشناسان در تعیین اوزان شاخص ها و عدم قطعیت در مقادیر شاخص ها با بهره گیری از اطلاعات یک دوره زمانی معین و به کمک منطق بازه ای، داده ها و اوزان شاخص ها به صورت اعداد بازه ای و شناور در فرآیند حل مسئله قرار گرفت. همچنین از آنجایی که نوع تصمیم گیری در مسئله براساس چندین شاخص می باشد، لذا مدل مورد استفاده در این تحقیق روش تاپسیس بازه ای (یکی از بهترین تکنیک های تصمیم گیری چند شاخصه) انتخاب گردید. این تحقیق بر روی تمامی استان های کشور و در طی دوره زمانی 1380 تا 1387 صورت پذیرفته است. نتایج این تحقیق شاخص سرمایه گذاری و درصد بهینه سرمایه گذاری برای هر استان در احداث صنایع شیر و لبنیات را با توجه به عدم قطعیت در مقادیر و اوزان شاخص ها تعیین نمود. همچنین نشان داد که الگوی فعلی سرمایه گذاری در صنایع لبنی در تمامی استان های کشور بهینه نبوده و نیاز به تعدیل در مقادیر فعلی سرمایه گذاری می باشد. در پایان پیشنهاد می گردد که به منظور از بین بردن شکاف ایجاد شده بین الگوی فعلی و بهینه سرمایه گذاری در صنایع لبنی، سمت و سوی سرمایه گذاری های آتی بر اساس درصدهای محاسبه شده در این تحقیق از استان های دارای سرریز سرمایه گذاری به استان های دارای کمبود هدایت گردد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Economic Investment Feasibility For Constructing Dairy Plants under Uncertainty Conditions

نویسندگان [English]

  • M Raee Dehaghi 1
  • M . Zahedi Keyvan 1
  • F . Karimi 2
چکیده [English]

The objective of this study is to determine the optimal model for investment in dairy plants in all provinces of the country under uncertainty conditions during 1380 to 1387. To this end, first, the effective indicators on the final goal and their weights according to viewpoints and experiences of experts were determined. Then, in order to overecome the ambiguities and inaccuracy in judgments of experts and lack of data and information the Interval Logic (special case of Fuzzy Logic) was used. Since the type of decision making in this study was based on several indicators, therefore, Interval TOPSIS technique was employed. Optimal investment and percentages for each province in the construction of dairy plants based on uncertainty in values of indicators and their weights were determined. The results showed that the current pattern of investment in the construction of dairy industries in all provinces of the country was not optimal. It was recommended that in order to eliminate the gap between the current and optimal investment, future investment should be directed to provinces with lower level of investment JEL Classification: Q1,C6, C61
 

کلیدواژه‌ها [English]

  • Interval TOPSIS
  • Multiple Attribute Decision Making
  • Dairy plants
  • uncertainty
1-Akbar N. A. Sharif M.2006. Agricultural Economics. AllamehTabatabai University Press. Tehran.
2-Akbari N. Zahedi Keyvan M. Monfaredyan M.2008. Efficiencyperformance of livestock industry in the country (An Approach: Interval Data Envelopment Analysis). Journal of Economic Research. Eightyears. No 3. PP 160-141.(in persian).
3-Akbari N.A. Zahedi Keyvan M.2008. Application of Ranking Methodsand Multiple Attribute Decision Making. Organization of Municipalities& Rurals Press (Ministry of Interior).
4-Alqaisi O. Ndambi L. Hemme T. 2008. Development of milkproduction and the dairy industry in Jordan. IFCN. Dairy ResearchCenter at the Department of Agricultural Economics. university of Kiel
Germany.
5-Biswas A. Baranpal B.2005. Application of fuzzy goal programmingtechnique to land use planning in agriculturalsystem. Omega Journal.Vol 33. Issue 5. PP 168-189.6-Chu T.Chung L. 2009. Interval arithmetic based fuzzy TOPSIS model.Expert Systems with Applications Journal. Vol 36. PP 123-139.
7-Drescher K.Maurer O. 2000. Competitiveness in the European dairyindustries. Agribusiness Journal. Vol 15. Issue 2.PP163 – 177.8-Frhmndyan R.2007.Optimum location of processing industry and itsrole in rural development. Thesis Master degree in industrialmanagement. Faculty of Humanities, Tarbiat Modarres University.
9-Jahanshahloo G.R. Hosseinzadeh Lotfi F.Davoodi A.R. 2009.Extension of TOPSIS for decision-making problems with interval data:Interval efficiency. Mathematical and Computer Modeling Journal. Vol49. PP 1137-1142. (in persian).
10-Khatami H.R. Ranjbar M. 2008. Foundations of fuzzy modeling.Kerman University Press (Shahid Bahonar).
11-Khazaee A.1997. Dairy industry and its role in development oflivestock sector. Proceedings of Seminar on Role of Technology inAgricultural Development. City of scientific and research.Isfahan.
12-Rahimi A.2001. Defining characteristics of complementary industriesand agricultural processing and rural industries, relying on othercountries experiences. Conference Proceedings of Fifty years planning inIran.Tehran University. (in persian).
13-Rahimi M.1997.Processing industries and agricultural development.Proceedings of Seminar on Role of Technology in AgriculturalDevelopment. City of scientific and research.Isfahan.
14-Rahnam A.S. Kalantari KH. Movahedi M.2009. Analyze TheAffective Spacial Factors on deployment of agricultural products processing industry in North Khorasan Province. Journal of Agricultural
Development Economics Research. Year 40, No. 4. pp. 27.
15-Sadeghi Shahdani M. Abdul Malik H.2009. Determing comparativeadvantage of the dairy industry in the provinces of the country using theMODM model. Journal of Business Research. No. 50. PP 89-76. (inpersian).
16-Taherkhani M.2007.Application of TOPSIS technique in thedeployment of spatial priorities of agricultural processing industries inrural areas. Researches growth and sustainable development (economicresearch). Seventh year. No.3. PP 59-73. (in persian).
17-Ting Y. Yung T.2009. The interval-valued fuzzy TOPSIS method andexperimental analysis. Fuzzy Sets and Systems Journal. Vol 159. PP1410-1428.
18-Xuan S. Qinzhou N. Hefei X. 2009.A Bayesian Method for Decisionof Weight for MADM Model with Interval Data. Internationalconference on advanced computer control. Canada. PP 319-323.
19-Yang T. Hung C.2007. Multiple attribute decision making methodsfor plant layout design problem. Robotics andComputer-IntegratedManufacturing Journal. Vol 28. PP 126–137.