تعیین الگوی بهینه ی کشت : کاربرد روش برنامه ریزی امکان

نویسندگان

1 عضو هیئت علمی دانشگاه آزاد اسلامی واحد یاسوج

2 عضو هیئت علمی دانشگاه پیام نور منجیل.

چکیده

از ویژگی های شاخص داده های فعالیت های کشاورزی، دقیق نبودن آن هاست، بنابراین استفاده از روش های مبتنی بر منطق فازی در برنامه ریزی تولید می تواند مناسب باشد. در این مطالعه روش برنامه ریزی امکان به عنوان یکی از روش های مبتنی بر منطق فازی مورد استفاده قرار گرفت. افزون بر این برنامه ریزی فازی و قطعی نیز در قالب برنامه ریزی ریاضی چندهدفی مورد استفاده قرار گرفت. داده های استفاده شده نیز از میان 100 بهره بردار منتخب منطقه ی کهگیلویه و بویراحمد در سال 1378 گرد آوری شد. افزایش بازده ی ناخالص و کاهش ریسک به عنوان هدف در نظر گرفته شد. بمنظور انتخاب از میان الگوهای گوناگون نیز از منطق فازی استفاده شد. بر اساس نتایج مشخص شد که ریسک بازده ی ناخالص در تدوین الگوی بهینه از وزنی بالا برخوردار است. همچنین یافته های مطالعه نشان داد که در تأمین توأم هدف های یاد شده، روش برنامه ریزی امکان در مقایسه با روش های دیگر از توانی بالاتر برخوردار است و پیشنهاد می شود در شرایطی که بهره برداران با شرایط نا بهینه مواجه اند، از این روش استفاده شود. محصولات پیشنهادی الگوهای بهینه نیز شامل گندم، هندوانه، خربزه، و برنج بود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Optimal Cropping Pattern: Application of Possiblistic Programming

نویسندگان [English]

  • M. Bagheri 1
  • F. Moazzezi 2
چکیده [English]

Imprecise or fuzziness is a main characteristic of agriculture activities data, thus fuzzy logic based methods may be useful in production planning. Possiblistic programming as one of fuzzy logic based methods was applied in this study. In addition, in the framework of multi objective programming, fuzzy and deterministic programming was also considered. Applied data set was obtained from 100 randomly selected farmers of Kohgilooye and Boyerahmad province in 1378. Gross margin increment and reduction of risk were considered as objectives in developing optimal cropping pattern. Fuzzy logic was also used to choose from the different cropping patterns. Based on the results it was found that risk had high weight in developing optimal solution. Findings of the study showed that Possiblistic programming was more capable in reaching various goals simultaneously as compared to the other methods especially when farmers faced with undesirable conditions. It was also found that wheat, watermelon, melon and rice were more appropriate crops for production.
 

کلیدواژه‌ها [English]

  • Possiblistic Programming
  • Fuzzy Programming
  • Deterministic Programming
  • Multi Objective
  • Cropping Plan
  • Kohgilooye and Boyerahmad
1 احسان، ع . ر. تهرانی، ر. و غ . ر. اسلامی بیگدلی 1387 . بررسی ضریب ریسک گریزی و واریانس تولید در
مدیریت ریسک مطالعه موردی گوجهفرنگیکاران دزفول. . فـصلنامة اقتـصاد کـشاورزی و توسـعه، : 35 - 61
17.
 -2 استانداری استان کهکیلویه و بویر احمد. (1388). پایگاه اینترنتی -http://www.ostan-kb.ir/state
fa.html
 -3 ترکمانی، ج . 1375 . استفاده از برنامه ریزی توأم با ریسک در تعیین کارآیی بهره بردا ران کشاورزی، مجله
علوم کشاورزی ایران، شماره . 27
 -4 چیذری، ا. و خ ع. . قاسمی . 1384 . برنامهریزی تولید محصولات کشاورزی در شرایط نبود قطعیت
(رویکرد فازی: نظریه امکان). فصلنامه اقتصاد کشاورزی و توسعه، ویژهنامه بهرهوری و کارایی. ص 131 -155.
 -5 درویشی سلوکلایی، د. عامری، ر. تیموری یانسری، ا. یزدانی پرایی، ا و ا، اکبری . 1385 . کاربرد بهینه-
سازی فازی در تنظیم جیره خوراکی گاوهای شیری. مجموعه مقالات ششمین کنفراس سیستمهای فازی
ایران، دانشگاه آزاد اسلامی-واحد شیراز.
 -6 فرجزاده، ز. ترکمانی، ج و ع. نجاتی 1388 . مطالعه ی تبادل میان هدف های بهره برداران و سیاست
گذاران در مصرف آب: مطالعه ی موردی منطقه ی فسا. مجله ی اقتصاد و کشاورزی. شماره 2)3 ی ): 184-
.159
http://www.maj.ir اطلاعاتی پایگاه .جهادکشاورزی وزارت 7-
 -8 یاقوتی، م و م. بخشوده 1387 . تعیین ترکیب بهینه ی جیره ی غذایی گاوهای شیری با روش برنامه
ریزی فازی: مطالعه ی موردی. مجله ی اقتصاد و کشاورزی. شماره 1)2 ی ): 103-118.
 -9 یزدانی، س . و ی . فیضآبادی 1384 . تعیین درجه ی ریسک گریزی مرغداران و مطالعه ی عوامل مؤثر بر
: آن مطالعه ی موردی شهرستان سبزوار. علوم کشاورزی. 15. 24- :( ) 2 11
10- Basarir, A. and Gillespie, J. M. (2006). Multidimensional goals of beef and
dairy producers: an inter-industry comparison. Agricultural Economics, 35:
103–114.
11- Berenger, V. and Verdier-Chouchane, A.(2007). Multidimensional measures
of well-being: Standard of living quality of life across countries, World
Development, Article in Press.
12- Cerioli, A. and Zani, S. (1990). A fuzzy approach to the measurement of
poverty. In C. Dagum, & M. Zenga (Eds.), Income and wealth distribution,
inequality and poverty, 272–284, Berlin: Springer-Verlag.
13- Chiappero Martinetti, E. (1996). Standard of living evaluation based on
Sen’s Approach: Some methodological suggestions. Notizie di Politeia, 12: 37–
53.
14- Cohon, J.L. (1978), Multi objective Programming and Planning. Academic
Press, New York.
15- Dillon, J. L. and Hrdaker, J. B. (1993), Farm management research for small
farmer development, FAO, Rome.
16- Doppler, W., Salman, A.Z., Al-Karablieh, E.K. and Wolf, H.P. (2002). The
impact of water price strategies on the allocation of irrigation water: the case of
the Jordan Valley. Agricultural Water Management. (55): 171-182.
17- Food and Agriculture Organization 2007. Statistical Database,
http://www.fao.org.
18- Francisco, S. R and Mubarik, A. (2006). Resource allocation tradeoffs in
Manila's peri-urban vegetable production systems: An application of multiple
objective programming. Agric. Sys. 87, 147–168.
19- Goodwin, B. K. and Smith, V. H. (1995), The economics of crop insurance
and disaster aid, The AEI Press, Washington, D. C.
20- Gupta, A. P., Harboe, R. and Tabucanon, M. T. (2000). Fuzzy multi-criteria
decision making for crop area planning in Narmada river basin. Agricultural
System, 63: 1-18.
21- Inuiguchif, M and J. Ramik (2000). Possibilistic linear programming: A
brief review of fuzzy mathematic programming and a comparison with
stochastic programming in portfolio selection problem. Fuzzy Sets and Systems,
111:3-28.
22- Kumar, M., Vrat, P and R. Shankar (2006). A fuzzy programming approach
for vendor selection problem in a supplt chain. Int. J. of Producction
Economics, 101:273-285.
23- Lai, Y. and Hwang, C. (1992). A new approach to some possibilistic linear
programming problems, Fuzzy Sets and Systems 49: 121–133. 
24- Li, X.Q., Zhang, B. and Li, H. (2006). Computing efficient solutions to
fuzzy multiple objective linear programming problems. Fuzzy Sets and
Systems, 157: 1328–1332.
25- Ozgen, D., Onut, S., Gulsun, B., Tuzkaya, U. R. and Tuzkaya, G. (2008). A
two-phase possibilistic linear programming methodology for multi-objective
supplier evaluation and order allocation problems. Information Sciences, 178:
485–500.
26- Suresh, K. R. and Mujumdar, P. P. (2004). A fuzzy risk approach for
performance evaluation of an irrigation reservoir system. Agricultural Water
Management, 69: 159-177.
27- Torkamani, J. and Hardaker, J.B. (1996). A study of economic efficiency of
Iranian farmers: An application of stochastic programming. Agric. Econ. 14:
73-83.
28- Wang, R. C. and Liang, T. F. (2005). Applying possibilistic programming to
aggregate production planning, International Journal of Production Function,
98: 328-341.
29- Zadeh, L. A (1965). Fuzzy sets. Information and Control 8: 338-353.
30- Zimmerman, H. J. (1978). Fuzzy programming and linear programming
with several objective functions. Fuzzy Sets and Systems, 1: 45-56.
31- Zimmermann, H. J. ( 1976). Description and optimization of fuzzy systems.
International Journal of General Systems 2, 209–215.