پیش بینی شاخص های کلان بخش کشاورزی با استفاده از الگوی رگرسیونی با داده های مختلط

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اقتصاد، ترویج و آموزش کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه اقتصاد، واحدسیرجان، دانشگاه ازاد اسلامی، سیرجان، ایران

چکیده

مقدمه و هدف: یکی از مهمترین بخشهای اقتصاد که اطلاع از نحوه عملکرد آن در آینده حائز اهمیت است، بخش کشاورزی می باشد. پیش بینی شاخص های کلان بخش کشاورزی برای برنامه ریزان و سیاست گذاران این بخش از اهمیت ویژه ای برخوردار است.  به این منظور هدف اصلی در این پژوهش برآورد شاخص های کلان بخش کشاورزی مانند ارزش افزوده کشاورزی،صادرات و واردات بخش کشاورزی توسط الگوی رگرسیونی با داده های  مختلط(میداس) می­باشد
مواد و روش­ها: در این تحقیق از رهیافت میداس که امکان بهره­گیری از داده­ها با تواتر مختلف را فراهم می­آورد، استفاده شد.  دوره مورد بررسی در این تحقیق از سال 1392 تا انتهای سال 1397 می باشد.تواتر داده ها برای ارزش افزوده کشاورزی فصلی بوده و برای صادرات کشاورزی ، واردات کشاورزی و متغیرهای تورم و نرخ ارز دارای داده های ماهانه و دما و بارش با تواتر فصلی مورد بررسی قرار گرفتند.
یافته­ ها: نتایج پیش بینی های ارائه شده توسط الگوی برآورد شده در این مقاله حاکی از قدرت بالای پیش بینی است.همچنین مشخص گردید که متغیرهای نرخ ارز و تورم در تمام معادله ها دارای تاثیر معنی دار می باشد و دما بر ارزش افزوده و صادرات اثر معنی دار دارد و میزان بارش در هیچ کدام از برآورد های مورد بررسی اثر معنی دار ندارد.
بحث و نتیجه­ گیری: نتایج حاصل از این مطالعه تایید واضحی بر قدرت قابل قبول پیش بینی­های بدست آمده از رهیافت میداس می­باشد. این نکته برای کشوری همچون ایران که با مشکل تواترهای مختلف برای داده­های دردسترس مواجه است، بسیار مهم می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Agricultural Macroeconomic Indicators Using Mixed Data Regression Models

نویسندگان [English]

  • zeynab omidvar 1
  • Ahmadali Ghaseminejad Raeeni 2
  • R. M 1
  • amir mohamadinejad 1
1 Department of Agricultural Economics, Extension and Education, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Economics, Sirjan Branch, Islamic Azad University, Sirjan, Iran
چکیده [English]

Introduction: Agriculture plays a key role in meeting food security goals of the country. Thus, knowledge on the future trends of agricultural indicators seems to be of vital importance for policy-making. On the other hand, access to data in agriculture is limited, while most of the available data are in different frequencies. This study is an empirical application of mixed data regression models: which considers this issue.
Materials and Methods: In order to touch study objectives, the MIDAS model is specified and estimated using time series (combination of quarterly and monthly information) data for the period from 2013 to the end of 2018. The variables include agricultural exports, agricultural imports, inflation and exchange rate in monthly frequency, and agricultural value added, temperature and precipitation in quarterly frequency.
Findings: The results confirmed good prediction power of the model. It is concluded that the exchange rate and inflation have a significant impact on all equations, and the temperature has a significant effect on value added and exports. Moreover, precipitation did not show a significant effect.
Conclusion: This study showed the capability of MIDAS approach in modeling of variables with different frequencies.

کلیدواژه‌ها [English]

  • Macroeconomic indicators
  • midas regression
  • long-term and short-term forecast pattern
  1. Barkchian M, Rezaee M.H. Performance of panel data regression with mixed data in prediction of quarterly inflation in Iran. Economics and Modeling, 2016; 101-123 https://ijer.atu.ac.ir/article_1630.html
  2. Pishbahar E, Bodagh Sh, Dashti Gh. Prediction of Iran’s agricultural growth: MIDAS approach. Economic Research (Sustainable Growth and Development), 2019; 45-61 http://dorl.net/dor/20.1001.1.17356768.1398.19.3.3.1
  3. Hosseini S.S., Homayounpour M. Influential factors on Iran’s agricultural exports. Agricultural Economics; 1-16 https://www.sid.ir/paper/124407/fa
  4. Sepehrdoust H, Shamsollahi V, Sarhadi D. Iran’s agricultural investment opportunities and challenges. Paper presented at Resistance Economics Conference, Babolsar, 2015 https://civilica.com/doc/586651/
  5. Soleymaninejad S, Dourandish A, Nikoukar A. Influential economic and climatic factors on Iran’s agricultural value-added. The 10th Iranian Agricultural Economics Conference, Kerman, 2016 https://www.sid.ir/paper/877539/fa
  6. Sayyadi F, Moghaddasi R. Impact of energy cost on cereals’ price using MIDAS model. Iranian Applied Economic Studies, 2015; 149-160 https://aes.basu.ac.ir/article_1237.html
  7. Espinoza R, Fornari F, Lombardi M. J. The role of financial variables in predicting economic activity. Journal of Forecasting, 2012; 15-46 https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1108.pdf
  8. Forn, M, Hallin M, Lippi M, Reichlin L. Do financial variables help forecasting inflation and real activity in the Euro area? Journal of Monetary Economics, 2003; 1243-1255 https://ideas.repec.org/a/eee/moneco/v50y2003i6p1243-1255.html
  9. Giannone D, Reichlin L, Small D. "Nowcasting: The real-time informational content of macroeconomic data. Journal of Monetary Economics, 2008; 665–676 https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp633.pdf
  10. Ghysels E, Santa-Clara P, Valkanov R. The MIDAS touch: Mixed Data Sampling regression models, mimeo, Chapel Hill, N.C. 2014 https://rady.ucsd.edu/_files/faculty-research/valkanov/midas-touch.pdf
  11. Luis M. Gomez-Zamudio, R. I. Are daily financial data useful for forecasting GDP? Evidence from Mexico , Documentos de Investigación Banco de México Working Papers N° 2017-17 https://www.banxico.org.mx/publications-and-press/banco-de-mexico-working-papers/%7BAB436397-D17E-8D2B-D047-60AD3CC13AB8%7D.pdf