ارزیابی اثرات هیدرولوژیکی و اقتصادی توسعه تکنولوژی های نوین آبیاری تحت شرایط خشکسالی: تلفیق مدل های WEAP و PMP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشگاه آزاد اسلامی، واحد مرودشت

2 دانشیارگروه اقتصاد کشاورزی، دانشگاه آزاد اسلامی، واحد مرودشت، مرودشت، ایران

3 استاد گروه اقتصادکشاورزی، دانشگاه آزاد اسلامی واحد مرودشت، مرودشت، ایران

چکیده

مقدمه و هدف: سیاست‌گذاران برای انتخاب و اجرای سیاست‌های مدیریت منابع آب در جهت سازگاری با خشکسالی با شرایط پیچیده و چندبعدی مواجه هستند. از یک طرف، به دلیل ماهیت چندبعدی و چند مقیاسی مدیریت منابع آب و خشکسالی، به ادغام ابزارهایی برای تحلیل اثرات و سازگاری نیاز است. از طرف دیگر، توسعه فناوری‌های نوین آبیاری در سطح مزارع یکی از راهکارها و سیاست-هایی است که همواره مورد بحث متخصصین و سیاست‌گذاران در زمینه مدیریت منابع آب می‌باشد. بنابراین، در مطالعه حاضر به منظور ارزیابی اثرات بالقوه خشکسالی و توسعه فناوری‌های نوین آبیاری به‌عنوان راهکاری جهت سازگاری با خشکسالی در حوضه آبریز سدکوثر از یک الگوی هیدرولوژیکی-اقتصادی استفاده شده است.
مواد و روش­ها: در این چارچوب، یک الگوی هیدرولوژیکی برنامه‌ریزی و ارزیابی آب (WEAP) و الگوی برنامه‌ریزی ریاضی مثبت (PMP) با قابلیت ارزیابی سیستم‌های اجتماعی-اقتصادی، زراعی و هیدرولوژیکی به شیوه‌ای فضایی و صریح با لحاظ تمامی ابعاد و مقیاس‌های مربوط به خشکسالی، تلفیق شد. داده‌ها و اطلاعات لازم نیز برگرفته از مطالعات اسنادی در سطح حوضه می‌باشد.
یافته­ ها: نتایج مطالعه نشان داد که با افزایش کارایی مصرف آب در بخش کشاورزی، کاهش مصرف آب بدون  کاهش کارایی اقتصادی و کیفیت زندگی اتفاق می‌افتد. به گونه‌ای که با بهبود کارایی 30 درصدی مصرف آب تحت شرایط خشکسالی، بهره‌وری اقتصادی مصرف آب در کل حوضه نسبت به شرایط پایه حدود 7 درصد افزایش خواهد یافت.
بحث و نتیجه­ گیری: به عبارتی، توسعه فناوری‌های نوین آبیاری منجر به ذخیره آب کشاورزان و ترغیب آن‌ها به کشت محصولات پربازده و با مصرف آب بالا می‌شود که این امر سبب بهبود وضعیت اقتصادی کشاورزان خواهد شد. بنابراین، می‌توان با اعمال سیاست‌هایی در جهت بهبود کارایی مصرف آب بدون اعمال سیاست‌های تنبیهی در زمینه جلوگیری از کاشت محصولات با مصرف آب بالا مانند برنج، کاهش مصرف آب بدون آسیب اقتصادی به کشاورزان را تحقق بخشید.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation Of Hydrological And Economic Effects Of Development Of New Irrigation Technologies In Drought Conditions: Integration Of WEAP And PMP Models

نویسندگان [English]

  • Ali Ghasemi 1
  • Seyed Nematollah moosavi 2
  • Bahaoddin Najafi 3
1 Ph.D. student of Agricultural Economics, Islamic Azad University, Marvdasht Branch.
2 Associate Professor, Islamic Azad University, Marvdasht Branch, Marvdasht, Iran
3 Professor of Agricultural Economics Department, Islamic Azad University, Marvdasht Branch, Marvdasht, Iran
چکیده [English]

Introduction: Policy makers are faced with complex and multidimensional conditions to choose and implement water resources management policies in order to adapt to drought. On the one hand, due to the multidimensional and multiscale nature of water resources and drought management, there is a need to integrate tools for impact analysis and adaptation. On the other hand, the development of new irrigation technologies at farm level is one of the solutions and policies that are always discussed by experts and policy makers in the field of water resources management. Therefore, in the present study, a hydrological-economic model was used in order to evaluate the potential effects of drought and to develop new irrigation technologies as a solution to adapt to drought in the Kowsar dam watershed.
Materials and Methods: In this framework, a hydrological water planning and evaluation model (WEAP) and a positive mathematical programming model (PMP) were combined with the ability to evaluate socio-economic, agricultural and hydrological systems in a spatial and explicit manner. The necessary data and information are also taken from documentary studies at the basin level.
Findings: The results of the study showed that by increasing the efficiency of water consumption in the agricultural sector, the reduction of water consumption occurs without reducing the economic efficiency and quality of life. In such a way that by improving the efficiency of water consumption by 30% under drought conditions, the economic efficiency of water consumption in the entire basin will increase by about 7% compared to the basic conditions.
Conclusion: In other words, the development of new irrigation technologies leads to the saving of farmers' water and encouraging them to cultivate high-yield crops with high water consumption, which will improve the farmers' economic situation. Therefore, by implementing policies to improve the efficiency of water consumption without applying punitive policies in the field of preventing the planting of crops with high water consumption such as rice, it is possible to reduce water consumption without economic damage to farmers.regarding the economic growth of neighbouring countries.

کلیدواژه‌ها [English]

  • Hydrological-Economic Modeling
  • Drought
  • New Irrigation Technologies
  • Water Consumption Efficiency
  1. Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., Vries, W. D., Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M. Ramanathan, V., Reyers, B., & Sörlin, S. Planetary boundaries: guiding human development on a changing planet. Science, 2015; 347 (6223), 1259855.
  2. Abdelkader, A., & Elshorbagy, A. ACPAR: A framework for linking national water and food security management with global conditions. Advances in Water Resources, 2021; 147 ,103809.
  3. Jahangard, H., Salami, H., & Shahnoushi, N. Economic evaluation and analysis of the effects of climate change on alfalfa yield in Iran (With drought mitigation approach). Iranian Journal of Agricultural Economics and Development Research, 2021; 52 (2), 201-213.‏ (In Farsi).
  4. Sadeghi, S. H., Moghadam, E. S., Delavar, M., & Zarghami, M. Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale. Agricultural Water Management, 2020; 233, 106071.
  5. Mishra, A. K., Kumar, B., & Dutta, J. Prediction of hydraulic conductivity of soil bentonite mixture using Hybrid-ANN approach. Journal of Environmental Informatics, 2016; 27 (2), 98e105.
  6. D’Odorico, P., Carr, J., Dalin, C., Dell’Angelo, J., Konar, M., Laio, F., & Tuninetti, M. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environmental Research Letter, 2019; 14 (5), 053001.
  7. Forni L.G., Medellin-Azuara J., Tansey M., Young Ch., Purkey D., & Howitt, R. Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis. Water Resources and Economics, 2016; 16, 15-27.
  8. Esteve P., Varela-Ortega C., Gutierrez I., & Downing T. E. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics, 2015, 120, 49-58.
  9. Kahil M.T., Ward F., Albiac J., Eggleston J., & Sanz, D. Hydro-economic modeling with aquifer–river interactions to guide sustainable basin management. Journal of Hydrology, 2016; 539, 510-524.
  10. Mirzaei, A., & Zibaei, M. Water conflict management between agriculture and wetland under climate change: Application of Economic-Hydrological-Behavioral modelling. Water Resources Management, 2021a; 35 (1), 1-21.‏
  11. Mirzaei, A., & Zibaei, M. Investigation of adaptation strategies for agricultural water resources management under climate change in Halil-rud river basin. Journal of Agricultural Economics and Development, 2021b; 34 (4), 397-419. (In Farsi).
  12. Hoseini, S. S., Nazari, M., & Araghinejad, S. Investigating the impacts of climate on agricultural sector with emphasis on the role of adaptation strategies in this sector. Iranian Journal of Agricultural Economics and Development Research (IJAEDR), 2013; 44 (1), 1-16. (In Farsi).
  13. Daneshvar, M., & Zibaei, M. Effects of sprinkler irrigation systems in response to drought in Fars province. Agricultural Economics, 2012; 6 (4), 115-132. (In Farsi).
  14. Babran, S., & Honarbakhsh, N. Water crisis in Iran and the world. Journal of Strategy, 2008; 16 (48), 193-212. (In Farsi).
  15. Yazdanpanah, T., Khodashenas, S. R., Davari, K., & Ghahraman, B. Basin water resources management using WEAP model (Case study of Azgand basin). Journal of Water and Soil, 2008; 22 (1), 213-222. (In Farsi).
  16. Gholami, M., Mazloumi, M., & Ghaderpour, L. The importance of water productivity in agriculture (Case study: Marvdasht-Ramjard plain). National Conference on Water Crisis Management, Islamic Azad University, Marvdasht. 2009; (In Farsi).
  17. Sabouhi, M., & Soltani, Gh. Optimization of cropping patterns at basin level by considering social profit and net virtual water import: A case study of Khorasan district. Journal of Water and Soil Science, 2008; 12 (43), 297-313.
  18. Shooshtarian, A. Analysis of economic, agricultural and environmental policies in Mashhad Bilo basin: An approach to agricultural sustainability. PhD thesis in agricultural economics, Faculty of agriculture, Shiraz university. 2010.
  19. Roohani, N., Yang, H., Amin Sichani, S., Afyouni, M., Mousavi, S. F., & Kamgar Haghighi, A. A. Evaluation of food exchange and virtual water according to water resources in Iran. Journal of Water and Soil Science, 2008; 12 (46), 417-432. (In Farsi).
  20. Asad Falsafizadeh, N., & Sabouhi, M. Determination of optimal environmental flow acquisition in Kor-river basin, Doroudzan dam. Journal of Agricultural Economics and Development, 2010; 24 (4), 415-424. (In Farsi).
  21. Madani, K., AghaKouchak, A., & Mirchi, A. Iran's socio-economic drought: challenges of a water-bankrupt nation. Iranian studies, 2016; 49 (6), 997-1016.
  22. Boazar, M., Yazdanpanah, M., & Abdeshahi, A. Response to water crisis: How do Iranian farmers think about and intent in relation to switching from rice to less water-dependent crops. Journal of hydrology, 2019; 570, 523-530.
  23. Zamani, O., Grundmann, P., Libra, J. A., & Nikouei, A. Limiting and timing water supply for agricultural production–The case of the Zayandeh-Rud River Basin, Iran. Agricultural Water Management, 2019; 222, 322-335.
  24. Zibaei, M., Soltani, Gh., & Bakhshoodeh, M. Management of agricultural water demand at the farm level, Case study: Firouzabad plain. The Fifth Agricultural economics conference, Sistan and Balouchestan. (In Farsi) 2005.
  25. Griffin, R. C. Effective water pricing. Journal of the American Water Resources Association, 2001; 37 (5), 1335-1347.
  26. Yang, H., & Zhang, X. Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture. Agricultural Water Management, 2003; 61 (2), 143-161.
  27. Bartolini, F., Bazzani, G. M., Gallerani, V., Raggi, M., & Viaggi, D. The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural System, 2007, 93, 90-114.
  28. Bender, M. J., & Simonovic, S. P. A fuzzy compromise approach to water resource systems planning under uncertainty. Fuzzy Sets and Systems, 2000; 115, 35-44.
  29. Sabouhi, M., Soltani, Gh., Zibaei, M., & Torkamani, J. Determination of suitable deficit irrigations strategies by maximizing social profit. Agricultural Economics and Development, 2006; 14 (56), 167-202. (In Farsi).
  30. Brinegar, H. R., & Ward, F. A. Basin impacts of irrigation water conservation policy. Ecological Economics, 2009; 69 (2), 414–426.
  31. Ward, F. A. Economic impacts on irrigated agriculture of water conservation programs in drought. Journal of Hydrology, 2014; 508, 114-127.
  32. Kavand, H., Ziaee, S., & Mardani Najafabadi, M. Assessing the consequences of internalization of the side effects of water pollution on the quantitative and qualitative management of Zayandehroud basin. Journal of Agricultural Economics and Development, 2020; 34 (3), 341-356.
  33. Nikouei, A., Zibaei, M., & Ward, F. A. Incentives to adopt irrigation water saving measures for wetlands preservation: An integrated basin scale analysis. Journal of Hydrology, 2012; 464-465, 216-232.
  34. Salman, D., Amer, S. A., & Ward, F. Protecting food security when facing uncertain climate: Opportunities for Afghan communities. Journal of Hydrology, 2017; 554, 200-215.
  35. Brown, D. G., Polsky, C., Bolstad, P., Brody, S. D., Hulse, D., Kroh, R., Loveland, T. R., & Thomson, A. Chapter 13: Land use and land cover change. climate change impacts in the United States: the third national climate assessment, 2014; 318-332.
  36. D'Agostino, D. R., Scardigno, A., Lamaddalena, N., & ElChami, D. Sensitivity analysis of coupled hydro-economic models: Quantifying climate change uncertainty for decision-making. Water Resource Management, 2014; 28 (12), 4303-4318.
  37. Draper, D. Assessment and propagation of model uncertainty. E Scholarship. 2011.
  38. Gottschalk, P., Luttger, A., Huang, Sh., Leppelt, Th., & Wechsung, F. Evaluation of crop yield simulations of an eco-hydrological model at different scales for Germany. Field Crops Research, 2018; 228, 48-59.
  39. Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellin-Azuara, J., Lund, J. R., & Howitt, R. E. Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 2009; 375 (3-4), 627-643.
  40. Jahangirpour, D., & Zibaei, M. Cropping Pattern Optimization in the Context of Climate-Smart Agriculture: A Case Study for Doroodzan Irrigation Network-Iran.‏ Journal of Agricultural Economics and Development, 2022; 35 (4), 407-422.
  41. Nikmehr, S., & Zibaei, M. Assessing the effects of climate change on hydrological and economic conditions of South Karkheh sub-basin. Agricultural Economics & Development, 2020; 34 (1), 63-79. (In Farsi).‏
  42. Layani, Gh., & Bakhshoodeh, M. Water security in Kowsar dam basin under climate variability: Application of system dynamics approach. Agricultural Economics, 2019; 13 (1), 47-72.
  43. Regional Water Company of Kohgiluyeh and Boyer-Ahmad. Comprehensive reports of water resources of Kowsar basin. 2018. (In Farsi).
  44. Abbasi, F., Sohrab, F., & Abbasi, N. Evaluation of the Efficiency of Irrigation Water in Iran. Engineering Research of Irrigation and Drainage Structures, 2015; 17 (67), 113-120. do: 10.22092 / aridse.2017.109617 (In Farsi).
  45. Yates, D., Sieber, J., Purkey, D., & Huber-Lee, A. WEAP21 - a demand-, priority-, and preference-driven water planning model. Part 1: model characteristics. Water International, 2005; 30 (4), 487-500.
  46. Sieber, J., & Purkey, D. WEAP, water evaluation and planning system. User Guide,
    Stockholm Environment Institute, U.S. Center, Somerville, USA. 2011.
  47. Howitt, R. Positive Mathematical Programing. American Journal of Agricultural Economics, 1995; 77, 329-342.
  48. Heckelei T. Calibration and Estimation of Programming Models for Agricultural Supply Analysis. Ph.D. Thesis, University of Bonn, Germany. 2002.