تدوین الگوی کشت سازگار با محیط‌زیست با رویکرد برنامه‌ریزی چندهدفه در شهرستان ساری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر پسادکتری دانشگاه علوم کشاورزی و منابع طبیعی ساری و استادیار گروه مدیریت و توسعه روستایی دانشگاه شهرکرد

2 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 گروه مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 گروه جامعه شناسی، دانشگاه پیام نور

5 گروه مهندسی آب، دانشگاه زابل

6 گروه جامعه شناسی، دانشگاه مازندران

7 گروه اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

8 گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

مقدمه و هدف: به دلیل اثرات سوء فعالیت­های تولیدی بخش کشاورزی بر محیط­زیست به‌ویژه آلودگی آب‌وخاک، یکی از مهم‌ترین تصمیمات در بخش کشاورزی تخصیص بهینه منابع است. این تصمیم باید به‌نحوی باشد ‌که ضمن حداکثر سازی سود زارعین، اثرات زیست‌محیطی کمتری را نیز در پی داشته باشد. این عمل اغلب از طریق تعیین الگوی بهینه کشت صورت می­گیرد. در این تحقیق با کمی سازی اثرات اقتصادی، اجتماعی و زیست‌محیطی، الگوی کشت سازگار با منابع کشاورزی با استفاده از مدل برنامه‌ریزی چندهدفه ارایه شد.
مواد و روش­ها: اثرات اجتماعی محصولات مختلف زراعی با استفاده از شاخص­هایی همبستگی اجتماعی، امنیت اجتماعی، مشارکت و کیفیت زندگی از طریق مصاحبه با زارعین محاسبه شد. اثرات زیست‌محیطی و کارایی اقتصادی سیستم کشت نیز به ترتیب از طریق مفهوم ارزیابی چرخه حیات (LCA) و بازده ناخالص در هر هکتار ارزیابی شد. در ادامه با محاسبه شاخص­های اقتصادی-اجتماعی و زیست‌محیطی،  الگوی کشت بهینه با توسعه یک تابع چندهدفه مبتنی بر حداکثر کردن سود، کاهش مصرف آب و کود، کاهش آثار منفی زیست‌محیطی تولید و بهبود شاخص‌های اجتماعی تدوین شد. به‌منظور حل مدل برنامه‌ریزی چندهدفه از روش معیارهای وزنی استفاده شد. اطلاعات موردنیاز در این مطالعه شامل اطلاعات الگوی تولید، مصرف نهاده­ها، قیمت و عملکرد محصولات عمده زراعی شهرستان ساری بود.
یافته ها: نتایج نشان داد که با ملاحظه شاخص­های اجتماعی، کمترین توجه کشاورزان مربوط به ذرت و پیاز بوده و پنج محصول اولویت‌دار ازنظر آن‌ها به ترتیب گندم، پنبه، عدس، برنج و کلزا شناسایی شدند. نتایج LCA نیز نشان داد کشت محصولاتی نظیر تنباکو، کلزا و ذرت در این شهرستان بیشترین اثرات منفی زیست‌محیطی را داشتند. در الگوی کشت بهینه با تلفیق اهداف اقتصادی، اجتماعی و زیست‌محیطی، یونجه، پنبه و ذرت از الگوی کشت منطقه خارج و سطح زیر کشت خیار، شبدر افزایش یافت. همچنین، تمامی محصولات گروه غلات با کاهش سطح زیر کشت روبرو  بوده و در این ‌بین تغییرات سطح زیر کشت جو بیش از گندم و شلتوک پیش‌بینی شد. مجموع سطح زیر کشت با کاهش 15 درصدی همراه بوده به‌گونه‌ای که می­تواند به‌صرفه‌جویی 91/12 درصدی مصرف آب و 46/14 درصد مصرف کود کمک نماید. علاوه بر این، بازده برنامه­ای در منطقه مورد مطالعه  97/12 درصد کاهش یافت.
بحث و نتیجه­ گیری: توسعه اهداف زیست‌محیطی در اجرای برنامه­های الگوی کشت، مستلزم آن است که سیاستگذاران مشوق­های اقتصادی مناسبی برای زارعین در نظر بگیرند. لذا سیاست‌گذاران باید راه‌حل‌های مناسبی برای متمایل کردن زارعین به الگوی پیشنهادی پیدا کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Developing environmentally friendly cropping pattern with a multi-objective planning approach in Sari County

نویسندگان [English]

  • ghasem layani 1
  • Abdollah Darzi 2
  • Ali Motevali 3
  • Mostafa Bagherian- Jelodar 4
  • Mahdi Kaikha 5
  • Mehdi Nadi 2
  • Ali Asghar Firouzjaeian 6
  • HAMID AMIRNEJAD 7
  • Hemmatollah Pirdashti 8
1 Postdoctoral Researcher, Sari Agricultural Sciences and Natural Resources University and Assistant Professor of Management and Rural Development Department, Shahrekord University
2 Water Engineering Department, Sari Agricultural Sciences and Natural Resources University
3 Department of Mechanics of Biosystem Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
4 Department of Social Sciences, Payame Noor University, Tehran, Iran.
5 Water Engineering Department, University of Zabol, Zabol, Iran.
6 Department of Social Sciences, University of Mazandaran, Babolsar, Iran.
7 Department of Agricultural Economics, Sari Agricultural Sciences and Natural Resources University
8 Department of Agronomy, Sari Agricultural Sciences and Natural Resources University
چکیده [English]

Introduction: Due to the negative effects of agricultural production activities on the environment, especially water and soil pollution, one of the most important decisions in the agricultural sector is the optimal allocation of resources. This decision should be in such a way that while maximizing the profit of farmers, it will result in less environmental effects. This action is often done by determining the optimal cropping pattern (CP). In this research, by quantifying the economic, social and environmental effects, a compatible CP with agricultural resources was presented by using a multi-objective planning model.
Materials and Methods: The social effects of different agricultural crops were calculated using various indicators such as social solidarity, social security, participation and quality of life through interviews with farmers. The environmental effects and economic efficiency of the CP were also considered through the concept of life cycle assessment (LCA) and gross margin per ha, respectively. Further, by calculating socio-economic and environmental indicators, the optimal CP was formulated by developing a multi-objective function based on maximizing profit, reducing water and fertilizer consumption, reducing negative environmental effects of production and improving social indicators. In order to solve the multiple programming model, the method of weighted LP-metric model was used. The information required in this study included information on the production pattern, consumption of inputs, price and yeild of major agricultural crops of Sari County.
 Findings: The results showed that considering the social indicators, the least attention of the farmers was related to corn and onion, and the five priority crops were identified as wheat, cotton, lentils, rice and canola, respectively. The results of LCA showed that the cultivation of tobacco, canola and corn in this city have the most negative environmental effects. In the optimal CP by combining economic, social and environmental goals, alfalfa, cotton and corn were removed from the stydy area, and the cultivated area of cucumber and clover showed positive changes compared to the current pattern. Also, the cultivated area of the cereal decreaseed in the areaChanges in the cultivated area of barley were predicted more than wheat and rice. The total cultivated area reduced by 15%, resulting in 12.91% and 14.46% reduction in water and fertilizer consumption, respectively. In addition, the efficiency of the program in the studied area decreased by 12.97%.
Conclusion: The development of environmental goals in the implementation of CP programs requires that policymakers consider appropriate economic incentives for farmers. Therefore, policy makers should find suitable solutions to make the farmers to follow the proposed CP.

کلیدواژه‌ها [English]

  • Life Cycle Assessment
  • Cultivation Pattern
  • Multi-Objective Planning
  • Sustainability
  1. Acosta-Alba, I., Chia, E., & Andrieu, N. (2019). The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop levels. Agricultural Systems171, 155-170.

https://www.sciencedirect.com/science/article/pii/S0308521X1830564X

  1. Bailey, A. P., Rehman, T., Park, J., Keatinge, J. D. H., & Tranter, R. B. (1999). Towards a method for the economic evaluation of environmental indicators for UK integrated arable farming systems. Agriculture, ecosystems & environment72(2), 145-158.

https://www.sciencedirect.com/science/article/abs/pii/S0167880998001716

  1. Bylin, C., Misra, R., Murch, M., & Rigterink, W. (2004). Sustainable Agriculture: Development of an On-farm Assessment Tool: a Project Submitted in Partial Fulfillment... for the Degree of Master of Science/Master of Forestry/Master of Landscape Architecture... University of Michigan.

https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.12077

  1. Chen, , Zhou, Y., Fang, S., Li, M., Wang, Y., & Cao, K. (2022). Crop pattern optimization for the coordination between economy and environment considering hydrological uncertainty. Science of the Total Environment809, 151152.

https://www.sciencedirect.com/science/article/abs/pii/S0048969721062306

  1. San Cristóbal, J. R. (2012). A goal programming model for environmental policy analysis: Application to Spain. Energy Policy43, 303-307.

https://www.sciencedirect.com/science/article/abs/pii/S0301421512000109

 

  1. Duckstein, L. (1981). Multiobjective optimization in structural design: The model choice problem. Arizona Univ Tucson Dept of Systems and Industrial Engineering.

https://apps.dtic.mil/sti/citations/ADP000073

  1. Emamzadeh, S. M., Forghani, M. A., Karnema, A., & Darbandi, S. (2016). Determining an optimum pattern of mixed planting from organic and non-organic crops with regard to economic and environmental indicators: A case study of cucumber in Kerman, Iran. Information processing in agriculture3(4), 207-214.

https://www.sciencedirect.com/science/article/pii/S2214317315300366

  1. Fantin, V., Righi, S., Rondini, I., & Masoni, P. (2017). Environmental assessment of wheat and maize production in an Italian farmers' cooperative. Journal of cleaner production140, 631-643.

https://www.sciencedirect.com/science/article/abs/pii/S095965261630823X

  1. Fathi, F., & Zibaei, M. (2012). Water resources sustainability using goal programming approach in optimizing crop pattern, strategy and irrigation method. Iran-Water Resources Research8(1), 10-19.

http://www.iwrr.ir/article_17413.html?lang=en

  1. Galán-Martín, Á, Pozo, C., Guillén-Gosálbez, G., Vallejo, A. A., & Esteller, L. J. (2015). Multi-stage linear programming model for optimizing cropping plan decisions under the new Common Agricultural Policy. Land use policy48, 515-524.

https://www.sciencedirect.com/science/article/abs/pii/S0264837715002008

 

  1. Halkidis, I., & Papadimos, D. (2007). Technical report of LIFE Environment project: Ecosystem based water resources management to minimise environmental impacts from agriculture using state-of-the-art modeling tools in Strymonas basin. Greek Biotope/Wetland Center (EKBY).

https://www.mdpi.com/2073-4433/11/7/677

  1. Hwang, C. L., & Masud, A. S. M. (2012). Multiple objective decision making—methods and applications: a state-of-the-art survey(Vol. 164). Springer Science & Business Media.

https://books.google.com/books?hl=en&lr=&id=M0noCAAAQBAJ&oi

  1. Jain, S., Ramesh, D., & Bhattacharya, D. (2021). A multi-objective algorithm for crop pattern optimization in agriculture. Applied Soft Computing112, 107772.

https://www.sciencedirect.com/science/article/abs/pii/S1568494621006931

  1. Khodarezaie, E., Veisi, H., Noori, O., Taheri, M., & Khoshbakht, K. (2017). Environmental impact assessment of olive production using Life Cycle Assessment: A case study, Tarom County, Zanjan province. Journal of Agroecology, 9(2), 458-474. doi: 10.22067/jag.v9i2.46350

https://agry.um.ac.ir/article_35864.html?lang=en

  1. Li, R., Lv, F., Yang, L., Liu, F., Liu, R., & Dong, G. (2020). Spatial–temporal variation of cropping patterns in relation to climate change in Neolithic China. Atmosphere11(7), 677.

https://www.mdpi.com/2073-4433/11/7/677

  1. Lundberg, L., Jonson, E., Lindgren, K., Bryngelsson, D., & Verendel, V. (2015). A cobweb model of land-use competition between food and bioenergy crops. Journal of Economic Dynamics and Control53, 1-14.

https://www.sciencedirect.com/science/article/abs/pii/S0165188915000044

  1. Manos, B., Papathanasiou, J., Bournaris, T., & Voudouris, K. (2010). A multicriteria model for planning agricultural regions within a context of groundwater rational management. Journal of environmental management91(7), 1593-1600.

https://www.sciencedirect.com/science/article/pii/S030147971000068X

  1. Mansuri, H. and Kohansal, M.R. (2007). Determine the optimum cropping pattern based on economic and environmental approach, the Sixth Conference of Agricultural Economics, Ferdowsi University of Mashhad. (In Persian)

https://gdij.usb.ac.ir/article_5061_a5b8b8674ad93aa39ad804ac70047122.pdf

  1. Najafabadi, M. M., Ziaee, S., Nikouei, A., & Borazjani, M. A. (2019). Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: A case study. Agricultural Systems173, 218-232.

https://www.sciencedirect.com/science/article/abs/pii/S0308521X18306644

  1. Marzban, Z., Asgharipour, M., Ganbari, A., Nikouei, A., Ramroudi, M., Seyedabadi, E. (2020). Reducing Environmental Impacts through Redesigning Cropping Pattern Using LCA and MOP (Case study: East Lorestan Province). Journal of Agricultural Science and Sustainable Production, 30(3), 311-330.

https://agris.fao.org/agris-search/search.do?recordID=DJ20210229021

  1. Miettinen, K. (2001, July). Some methods for nonlinear multi-objective optimization. In Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2001 Zurich, Switzerland, March 7–9, 2001 Proceedings(pp. 1-20). Berlin, Heidelberg: Springer Berlin Heidelberg.

https://link.springer.com/chapter/10.1007/3-540-44719-9_1

  1. Mirzaei, A., Layani, G., Azarm, H., Jamshidi, S. (2019). Determination Optimal Crop Pattern of Sirjan County Central Part Based on Stability of Water Resources and Environmental. Agricultural Economics Research, 9(36), 283-304.

https://www.cabdirect.org/cabdirect/abstract/20183102413

  1. Mosleh, Z., Salehi, M. H., Fasakhodi, A. A., Jafari, A., Mehnatkesh, A., & Borujeni, I. E. (2017). Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multi-objective programming. Geoderma303, 52-59.

https://www.sciencedirect.com/science/article/abs/pii/S0016706117300174

  1. Mousavi, S. N., Saleh, I., and Akbari, S. M. (2015). The Optimal cropping pattern and its impact on water resources management (Case study: Mrvdsht- Karbala region). Water Engineering, 7: pp. 101-110.

https://www.sciencedirect.com/science/article/abs/pii/S0016706117300174

  1. Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., & Jiménez-Gavilán, P. (2016). The use of AQUATOOL DSS applied to the of Environmental-Economic Accounting for Water (SEEAW). Journal of hydrology533, 1-14.

https://www.sciencedirect.com/science/article/abs/pii/S002216941500921X

  1. Rao, AR, Scanlan JP & Keane AJ. (2007). Applying Multiobjective Cost andWeight Optimization to the Initial Design of Turbine Disks. J. Mech. Des., 129: 1303.

https://asmedigitalcollection.asme.org/mechanicaldesign/article-abstract/129/12/1303/461929/Applying-Multiobjective-Cost-and-Weight

  1. Tovar-Facio, J., Guerras, L. S., Ponce-Ortega, J. M., & Martin, M. (2021). Sustainable Energy Transition Considering the Water–Energy Nexus: A Multiobjective Optimization Framework. ACS Sustainable Chemistry & Engineering, 9(10), 3768-3780.

https://pubs.acs.org/doi/full/10.1021/acssuschemeng.0c08694

  1. Xu, Z. (2000). On consistency of the weighted geometric mean complex judgement matrix in AHP. European journal of operational research126(3), 683-687.

https://www.sciencedirect.com/science/article/abs/pii/S037722179900082X

  1. Zeleny, M. (1973). Compromise programming. In Cochrane, J.; Zeleny, M., eds., Multiple Criteria Decision Making, 262–301. University of South Carolina Press, Columbia, 1973.

https://cir.nii.ac.jp/crid/1573387450346632704